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Abstract

The characteristics of the flow in the wake of a plate that is normal to the free stream in its neutral position

undergoing rotational oscillation has been investigated. The governing equations based on stream-function/vorticity

formulation are solved numerically to determine the two-dimensional flow field structure. The numerical simulations

are performed in a rotating reference frame attached to the plate. The simulations focus on the lock-on phenomenon of

vortex shedding for frequency ratios of forcing Strouhal number to natural shedding Strouhal number

Ste=Stn ¼ 0:96–1.04 at a Reynolds number Re ¼ 100. The time histories of drag coefficient as well as surface vorticity

of the plate show amplitude modulation when the vortex shedding is not-locked-on to the plate oscillation at smaller

forcing amplitude. The modulation disappears once lock-on occurs where the vortex shedding is synchronized with the

plate oscillation at larger amplitude. The limits of lock-on regime bounded by the forcing frequency and amplitude are

found in good agreement with the experiments conducted at higher Reynolds numbers (Re ¼ 360029800). For the

approach to lock-on from a lower frequency (Ste=Stn ¼ 0:96) and an upper frequency (Ste=Stn ¼ 1:04), the numerical

simulations demonstrate significant differences in lock-on behavior, including the structure of vortices, fluctuation

amplitudes of drag coefficient and surface vorticity, and route leading to lock-on.
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1. Introduction

It is well known that periodic shedding of vortices from a bluff body may result in fluctuating forces on the body.

When the incident mean flow or the body is forced to oscillate with sufficiently large amplitude at a frequency that is

close to the natural shedding frequency, the vortex shedding can be synchronized with the forced oscillation. The

synchronization of vortex shedding is commonly called the lock-on phenomenon (Blevins, 1990). The lock-on of vortex

shedding to an external forcing provides potential means for active control of the wake flow behind a bluff body.

The studies on the oscillating bluff body flow can be divided into two categories depending on the motion of the

body. The first category is for the body undergoing either an in-line or transverse oscillation with respect to the free

stream [e.g. Griffin and Ramberg (1976), Ongoren and Rockwell (1988a, b)]. The other is the body oscillating

rotationally about its axis across the mean flow. In contrast to numerous studies carried out for the first category, the
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number of studies on the second category appears relatively small but has rapidly increased recently. Nevertheless, the

experimental and numerical studies on the second category mostly deal with the flow due to a rotationally oscillating

circular cylinder (Tokumaru and Dimotakis, 1991; Filler et al., 1991, Baek and Sung, 2000; Mahfouz and Badr, 2000;

Cheng et al., 2001; Choi et al., 2002). Comparatively, fairly few studies have reported on the flow past a rotationally

oscillating flat plate. Unlike the case of the circular cylinder, the flow over a flat plate is characterized by fixed

separation points at the edge of the plate. Moreover, in numerical simulations one should deal with a moving boundary

condition on the rotating plate surface, rather than a fixed condition usually imposed on the rotating circular cylinder

surface. Even for a stationary normal flat plate, the wake behind it demonstrates interesting complex dynamics (Najjar

and Balachandar, 1998). Chua et al. (1990) have made numerical and experimental investigations of the separated flow

over a laterally oscillating plate and reported transient variations in the flow field and the resultant aerodynamic

characteristics. But, they did not show the vortex shedding that is locked-on with the forcing. Among the few reports on

a rotationally oscillating flat plate, only Chen and Fang (1998) and Fang and Chen (2000) observed the lock-on of

vortex shedding in wind tunnel experiments. However, due to limitations in the experiments, the detailed flow field of

vortex lock-on and the effects of rotational oscillations of a flat plate remain unclear.

The present numerical study aims to investigate the characteristics of vortex lock-on for a rotationally oscillating flat

plate that is normal to the free stream in its neutral position. The onset of vortex lock-on depends on the combination of

the forcing frequency and amplitude of the oscillating plate. This study focuses on the flow behavior that may vary with

the forcing Strouhal number Ste in a range of 0:96pSte=Stnp1:04, slightly above or below the natural shedding

Strouhal number Stn behind the stationary normal plate. Within this forcing frequency range, the influence of forcing

amplitude on the lock-on behavior is examined as well. The governing equations based on stream-function/vorticity

formulation are solved numerically by a finite difference scheme to determine the two-dimensional flow field structure at

a Reynolds number Re ¼ 100. The numerical simulations are performed in a rotating reference frame attached to the

plate, which yields a simpler boundary condition on the surface of the rotationally oscillating plate. The numerical

results are compared with the experiments of Chen and Fang (1998).
2. Numerical method

Fig. 1 illustrates the schematic of the physical model presented in an inertial coordinate system. A vertical zero-

thickness plate of width H is placed in a uniform cross-stream with a free-stream velocity U . The plate is undergoing a

sinusoidal rotational oscillation about its axis of the form

y ¼ A0 sinð2pf etÞ, (1)

where y is the angular displacement, t is the time, and A0 and f e are the angular displacement amplitude and frequency,

respectively.

The present numerical study considers the two-dimensional flow of a viscous incompressible fluid. In order to

simplify the boundary condition on the plate surface, the numerical simulations are based on the coordinates that are

attached to the plate and rotating with its oscillating motion and the origin coincides with the rotation axis. The

governing equations are expressed in terms of dimensionless vorticity oI and stream function jI in the inertial frame as

follows:

qoI

qt
þ u

qoI

qx
þ v

qoI

qy
¼

1

Re
r2oI , (2)

q2jI

qx2
þ

q2jI

qy2
¼ �oI , (3)

where the subscript I denotes the quantity measured in the inertial frame, the velocities u and v and the coordinates x

and y are in the rotating frame, and Re ¼ UH=v is the Reynolds number with v as the kinematic viscosity. The vorticity

and stream function in the inertial frame are related to those in the rotating frames (o and j), respectively, by

oI ¼ oþ 2O, (4)

jI ¼ j�
Or2

2
, (5)

where O is the angular velocity of the plate and r denotes the radial position from the origin. All variables including t

are herein nondimensionalized by the plate width H and the free-stream velocity U .
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Fig. 2. Computational mesh.

Fig. 1. Schematic of flow configuration in physical plane.
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The numerical simulations are carried out in the rotating coordinates with an appropriate computational grid for

discretizing Eqs. (2) and (3). Fig. 2 shows part of the computational grid distribution in the x2y coordinates, in which

the plate is located at x ¼ 0 and �0:5pyp0:5. The grid is nonuniformly distributed, with much more grid points in the

vicinity of the plate to take account of rapid variations in this region. The nonuniform grid distribution can be mapped

onto a computational domain (x, Z) that contains a uniform grid distribution for implementation of the numerical

programs using the finite difference method. The governing stream-function/vorticity equations in the computational

domain are given as

oIt þ uJyZoIx þ vJxxoIZ ¼
1

Re
ðaoIxx þ coIZZ þ doIZ þ eoIxÞ, (6)

J2ðajIxx þ cjIZZ þ djIZ þ ejIxÞ ¼ �oI , (7)
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where

a ¼ y2Z; c ¼ x2
x; d ¼ �Jxxb; e ¼ �JyZa; a ¼ axxx þ cxZZ,

b ¼ ayxx þ cyZZ; J ¼ xxyZ.

Eqs. (6) and (7) in the coordinates (x, Z, t) are solved with using a second-order central difference scheme in space and

first-order backward Euler scheme in time. Here, we use the first-order implicit scheme rather than a higher-order

explicit Runge–Kutta or implicit Crank–Nicolson method, for considerations of numerical stability and implementa-

tion of the simulations in the already complex rotating frame. When computing oI and jI of Eqs. (6) and (7), we

employ the ADI (alternative-direction-implicit) technique that successively performs the x-sweep and Z-sweep for the

vorticity and then the x-sweep and Z-sweep for the stream function. The convergence condition for time advancement is

that root-mean-square (r.m.s.) of the residuals of Eqs. (2) and (3) for oI and jI , respectively, satisfies the following

inequalities:

Rms
qoI

qt
þ u

qoI

qx
þ v

qoI

qy
�

1

Re
r2oI

� �
o10�6, (8)

Rmsðr2jI þ oI Þo10�6. (9)

Moreover, the iterative successive over-relaxation (SOR) method is employed to solve the linear systems involved in

the discretized stream function jij and vorticity oij as

jmþ1
ij ¼ ljmþ1

ij þ ð1� lÞjm
ij , (10)

omþ1
ij ¼ lomþ1

ij þ ð1� lÞom
ij , (11)

where l is the acceleration parameter, and m denotes the iteration number. After several tests, an optimum acceleration

parameter l ¼ 1:93 has been found for the convergence of the iterative processes.

To investigate the lock-on behavior of the vortices shedding from the rotationally oscillating plate, Eqs. (6) and (7)

are solved with initial and boundary conditions that are compatible with the experiments of Chen and Fang (1998). The

flow field obtained for the stationary plate is used as the initial condition for the flow simulations of oscillating plate.

The boundary conditions to be satisfied are the no-slip and impermeability conditions on the plate surface and the

inflow and outflow conditions at the upstream and downstream boundaries, respectively. The no-slip condition imposed

on the plate surface is based on the rotating frame, for which the inertial quantities are expressed as

jI ðxw; yw; tÞ ¼ �
OðtÞr2

2
, (12)

oI ðxw; yw; tÞ ¼ �r2jðxw; yw; tÞ þ 2OðtÞ, (13)

where jðxw; yw; tÞ ¼ 0 on the plate surface. The uniform free-stream condition is used at the inflow boundary as well as

on the upper and lower boundaries in the y-direction, where the stream function is considered constant and the vorticity

is taken equal to zero along the boundaries. The floating condition is employed at the outflow boundary, where the

derivatives of the stream function and vorticity in x-direction are taken equal to zero. The computational domain

covers �8pxp25 and �8pyp8 with a resolution of 121� 87 grid points, respectively, in the horizontal and vertical

directions. The nonuniform grid as illustrated in Fig. 2 has grid sizes no larger than 0.1 in the neighborhood of the plate

(�1pxp4 and �2pyp2), with the minimum size of 0.02 near the edges to capture the vortical structure being shed. A

computational time step Dt ¼ 0:002 is used to keep the maximum convective CFL number below 0.5. Convergence of

the spatial and temporal resolutions is examined for the case of stationary normal plate at Re ¼ 100. It is found that

doubling the grid resolutions in the x and y directions or halving the time step results in a change of less than 0.5% in

the time-mean drag coefficient.

The distribution of pressure coefficient Cp along the plate surface may be obtained from the integration of the

momentum equation that relates the pressure gradient to the vorticity flux across the plate surface into the fluid

(Panton, 1984). For two-dimensional flow over an oscillating plate, the integration reads

Cp ¼ �2 �

Z S

O

1

Re

qoI

qn
ds þ

dO
dt

Z S

O

ðxdy � ydxÞ þ O2ðr2S � r2OÞ

� �
, (14)

where s is the position on the plate, n is the unit normal, rS ¼ ðx2
S þ y2SÞ

1=2 and rO ¼ ðx2
C þ y2CÞ

1=2, and the subscripts c

and s represent the center and arbitrary positions on the plate, respectively. In the above equation, the second integral
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term is identical to zero for the case of the present study since x and y are orthogonal to each other. Moreover, the

derivative qoI=qn in the equation is computed using the second-order one-side formula. The drag coefficient can then

be obtained by integration of Cp along the front and back surfaces of the plate:

CD ¼ �

I
Cp

dy

ds
ds. (15)

The numerical method was used to compute the flow over a stationary normal plate for verification prior to

conducting numerical simulations of flow past a rotationally oscillating plate. For the stationary case, we have obtained

Stn ¼ 0:176 and 0.174 for Re ¼ 100 and 126, respectively. These Strouhal numbers along with the corresponding flow

structures and the transient growth in longitudinal formation length of the wake bubble behind the plate agree well with

those obtained by previous investigators (Taneda and Honji, 1971; Tamaddon-Jahromi et al., 1994; Najjar and Vanka,

1995). The time-mean drag coefficient without blockage correction obtained is 2.91 for Re ¼ 100, which is in close

agreement with value of 2.9 obtained by Najjar and Vanka (1995) in a simulation with high temporal and spatial

resolutions at the same Reynolds number and blockage ratio (1/16).
3. Results and discussion

The computation is based on the rotating frame that is periodically oscillating about the rotation axis. When one tries

to use the fluctuating velocity of the inertial frame for determination of vortex lock-on, interpolation must be carried

out. The interpolation process could result in error to some extent as the plate oscillates with large displacement

amplitude. In the present study, we use the time-varying values of the drag coefficient CD as well as the vorticity W o at

the rotation axis on the back surface of the plate to determine the lock-on state.

Fig. 3 shows the time histories of CD and W o for non-lock-on and lock-on cases at a dimensionless oscillation

frequency Ste=Stn ¼ 0:960. The non-lock-on case that is computed at A0 ¼ 151 demonstrates amplitude modulation

with a large modulation period. Notably, the maximum fluctuation in W o corresponds to a rapid change of the

fluctuation amplitude in CD. The modulation phenomenon will be further examined later using the spectral analysis. As

the oscillation amplitude increases to A0 ¼ 201, the shedding of vortices can be locked-on to the oscillating plate

beginning at a dimensionless time around t ¼ 50. Thereafter, the amplitude of CD and W o remain constant during the

lock-on state. Synchronization of the vortex shedding with the oscillation of the plate can be examined by comparison

of the phase evolution between the two motion traces. Figs. 4 and 5 illustrate the variations of the phase of CD and W o

in reference to a fixed angular displacement position (y ¼ 0) of the plate for the just-mentioned non-lock-on and lock-

on cases, respectively. The trace of the neutral position of the plate is presented with a solid dot symbol in the figures.

The time interval between the solid dots represents a half cycle of the plate oscillation in the CD trace and a full cycle in

the W o trace. It can be seen that the shedding of vortices is synchronized with the motion of the plate for the lock-on

case, and the neutral position corresponds to a maximum in CD and nearly a minimum in W o. This indicates that a

vortex is alternatively shed from the upper and lower edges of the plate per half cycle and the vortices being shed are all

equal in size. The synchronization does not occur for the non-lock-on case, for which both of the CD and W o traces

show progressing phase lead against the plate oscillation due mainly to the slightly lower forcing frequency than the

natural shedding frequency. Unlike the lock-on case, each of the vortices being shed at the alternating edges falls

slightly short of a half cycle in the non-lock-on case, and the vortices vary in size. The variation of the vortex size takes a

long period, as indicated in the modulated CD and W o traces.

As the vortices are shed from an oscillating plate, a periodic force is exerted on the plate. The streamwise component

of the periodic force (i.e., the drag force) experienced by the plate will be at twice the frequency of the vortex shedding as

well as the plate oscillation, while the frequency of the force component in the transverse direction (i.e., the lift force,

which is relatively much smaller for the present case) are the same as the vortex-shedding frequency. The power spectra

of CD for the non-lock-on and lock-on cases are given in Fig. 6. In the non-lock-on spectrum, three frequency

components dominate, namely the forcing frequency Ste ¼ 0:169, the vortex-shedding frequencies Stv, and the

modulation frequencies Stm. The forcing component appears with a sharp, high peak in the spectrum at a dimensionless

value of 0.338, that is twice Ste. The vortex-shedding frequencies Stv are slightly higher than the forcing frequency with

a prominent frequency and shifting between 0.175 and 0.23, but mostly in a lower frequency band. The modulation in

the non-lock-on case indicates a strong nonlinear interaction between the excited oscillation and the shedding of

vortices. Therefore, the discrepancy between Ste and Stv results in rather low modulation frequencies Stm. This is

evident in the spectrum showing Stm as a difference between Ste and Stv. In the present study, the modulation

periods are found to be 190 in dimensionless time nearly identical for Ste=Stn ¼ 0:96 at A0 ¼ 101 and 151 and 207 for
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Ste=Stn ¼ 0:96 at A0 ¼ 101, appearing to be more dependent on the forcing frequency than the forcing amplitude. Such

a modulation phenomenon has also been observed in the simulations of flow past a circular cylinder subjected to

rotational oscillations (Baek and Sung, 2000; Mahfouz and Badr, 2000; Choi et al., 2002) as well as one undergoing

transverse oscillations (Anagnostopoulos, 2000). The modulation occurs typically when Ste=Stn � 1 at a forcing

amplitude slightly lower than the lock-on threshold, which is referred to as the ‘‘receptivity region’’ by Karniadakis and

Triantafyllou (1989). Choi et al. (2002) have recently discussed in detail the modulation phenomenon that occurs near

Ste=Stn � 1 and at higher forcing frequencies. In the lock-on spectrum, only the forcing frequency and its higher

harmonics appear prominent, indicating the synchronization of the vortex shedding with the plate oscillation. This

observation of the spectra agrees with the experiment of Chen and Fang (1998).
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Fig. 3. Time histories of CD and W o at Ste=Stn ¼ 0:960 for (a) non-lock-on (A0 ¼ 151) and (b) lock-on (A0 ¼ 201) cases.
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Fig. 4. Comparison of CD and W o time histories with plate motion (K denotes the neutral position, y ¼ 0) at Ste=Stn ¼ 0:960 for non-
lock-on (A0 ¼ 151) case: (a) dimensionless time 0–50; (b) dimensionless time 50–100.
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The state of vortex lock-on can be approached from either a lower forcing frequency (Ste=Stno1) or a upper forcing

frequency (Ste=Stn41). Fig. 7 illustrates the lock-on time histories of CD and W o for an approach from an upper

frequency of Ste=Stn ¼ 1:040 at A0 ¼ 201. The comparison is made with the time histories of Fig. 5 showing an

approach to lock-on from a lower frequency of Ste=Stn ¼ 0:960 at the same forcing amplitude. During the early stages

when the plate begins to oscillate from a stationary situation, the time histories show nearly the same pattern for the

lower and upper frequency approaches, that is a growing amplitude up to t ¼ 10. Thereafter, the fluctuation amplitudes

of CD and W o remain constant for the case of the upper frequency (Ste=Stn ¼ 1:040) approach, indicating a rapid

reaching to the lock-on state. For the lower frequency approach, the amplitudes of CD and W o decrease gradually, until

the lock-on state is reached at t ¼ 50. The phenomenon that larger fluctuation of CD and W o for the upper frequency

approach to the lock-on and smaller oscillation for the lower frequency approach is due largely to the strength as well as

the position of the starting vortex that develops near the edge of the plate. Fig. 8 shows the streamline contours for
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Fig. 5. Comparison of CD and W o time histories with plate motion (K denotes the neutral position y ¼ 0) at Ste=Stn ¼ 0:960 for lock-
on (A0 ¼ 201) case: (a) dimensionless time 0–50; (b) dimensionless time 50–100.
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Ste=Stn ¼ 1:040, 1.0 and 0.960 at the same oscillation amplitude A0 ¼ 201. It can be seen that the center of the starting

vortex appearing in the neighborhood of the lower edge of the plate at the same angular displacement position develops

closer to the rear surface of plate as Ste=Stn increases from 0.960 to 1.040. The vortex developed closer to the plate

surface with more compact structure (as will be seen in Fig. 9) results in larger amplitude in the time histories of the drag

coefficient and surface vorticity at the rotation axis. The numerical results are consistent with the flow visualization of

Chen and Fang (1998).

The approach to lock-on from upper or lower frequency forcing is expected to exhibit different vortex spacing in the

wake (Anagnostopoulos, 2000). Fig. 9 shows the vorticity contours for Ste=Stn ¼ 1:040 and 0.960 at the same oscillation

amplitude A0 ¼ 201. It can be seen that the longitudinal vortex spacing, which is defined by the horizontal centers of

consecutive vortices shed from the same edge of the plate, reduces from 4.6–4.8H to 4.0–4.2H as the forcing frequency
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Fig. 6. Power spectra of drag coefficient at Ste=Stn ¼ 0:960 for (a) non-lock-on (A0 ¼ 151) and (b) lock-on (A0 ¼ 201) cases.
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increases from Ste=Stn ¼ 0:960 to 1.040 in the wake region between x ¼ 3 and 12. The vortex convection velocities in

this region were estimated at 0.80 and 0.76U for Ste=Stn ¼ 0:960 and 1.040, respectively. However, the lateral vortex

spacing, which is defined by the vertical centers of consecutive vortices shed from the upper and lower edges of the plate,

is about 2.4H, essentially unaffected by the difference in forcing frequency.

It is also of interest to examine the effect of forcing amplitude on the lock-on vortical structure. Figs. 10 and 11 show

the streamline and vorticity contours, respectively, computed at the same forcing frequency Ste=Stn ¼ 1:0 for different

oscillation amplitudes A0 ¼ 101 and 201. Notice that vortex shedding at Ste=Stn ¼ 1:0 can be locked-on to an arbitrarily

small forcing amplitude in numerical simulation. As the forcing amplitude increases from 101 to 201, it can be seen that

the starting vortex of the upper row moves upward nearing the plate edge. As a result, the lateral vortex spacing

increases from 2.0 to 2.5H with an increase of the forcing amplitude. However, the increase of forcing amplitude at the

same forcing frequency has no essential influence on the longitudinal vortex spacing, which is nearly the same at about

4.3H. The variation of the longitudinal and lateral vortex spacing for the lock-on state with the forcing frequency and

amplitude demonstrates the same trend as the experiments of Griffin and Ramberg (1976). The experiments of Griffin

and Ramberg were conducted for flow across a circular cylinder oscillating transversely and horizontally.

The onset of vortex lock-on to the external forcing oscillation depends on the combination of the forcing frequency

and amplitude. Fig. 12 shows the limits of lock-on regime bounded by the forcing frequency and angular displacement

amplitude computed in the present study. In general, the forcing amplitude for the onset of lock-on increases with an
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Fig. 7. Time histories of CD and W o leading to lock-on for Ste=Stn ¼ 1:040 at A0 ¼ 201: (a) dimensionless time 0–50; (b) dimensionless

time 50–100.
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increase in the difference between the forcing and natural shedding frequencies. But the approach from the upper

forcing frequency requires smaller forcing amplitude than that from the lower frequency. The lock-on boundary,

although computed at a lower Reynolds number Re ¼ 100, appears to be in good agreement with the experiments of

Chen and Fang (1998). The lock-on boundary obtained in the experiments were correlated from the selected data

measured for Re ¼ 360029800 at the same corrected free-stream velocity of 1.83 m/s for unbounded flow. Here, no

attempt is made to interpret the above comparison as a result that the Reynolds number has little influence on the wake

structure for the lock-on cases. This agreement, however, suggests that the Reynolds number effect on the lock-on

boundary for the oscillating normal plate may not be as substantial as in the case of an oscillating circular cylinder in

which the variability of the separation-point position adds a degree of freedom to complexity (Roshko, 1993). It is
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Fig. 8. (a)–(c) Streamline contours for Ste=Stn ¼ 1:040, 1.0 and 0.960, respectively, at A0 ¼ 201.
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conjectured that when the vortex shedding is locked-on to the oscillating normal plate at Ste=Stn � 1, the flow in the

laboratory can be controlled to be more two-dimensional with organized vortex wake even at moderate Reynolds

numbers and the lock-on boundary is mainly determined by the occurrence of strong resonance between the forcing

oscillation and the organized large-scale vortices being shed, rather than the coalescence of secondary vortices (Cheng et

al., 2001). Accordingly, the onset of lock-on may be less sensitive to the nonlinear transition in the separating shear

layers than one may expect for the stationary case. Nevertheless, further numerical simulations and experiments

covering higher Reynolds numbers and a wider range of forcing frequency are needed to attain a better understanding

of the lock-on mechanism.
4. Conclusion

Numerical simulations have been carried out to investigate the lock-on of vortex shedding from a rotationally

oscillating flat plate for two-dimensional laminar flow at Re ¼ 100. The onset of vortex lock-on depends on the

combination of the forcing frequency and amplitude of the oscillating plate. The time histories of drag coefficient as

well as the surface vorticity at the rotation axis of the plate show amplitude modulation when the vortex shedding is

non-locked-on to the motion of the plate oscillating at smaller forcing amplitude. Once the vortex shedding is in the

lock-on regime, achieved by increasing the forcing amplitude, the modulation disappears and the time histories

synchronize with the plate motion. It is found that the starting vortex tends to move toward the tip of the plate as the

forcing amplitude increases, enlarging the lateral vortex spacing. On the other hand, the longitudinal vortex spacing

shrinks as the forcing frequency increases. The limits of the lock-on regime bounded by the forcing frequency and

angular displacement amplitude are found to agree well with the experiments of Chen and Fang (1998) conducted at

higher Reynolds numbers (Re ¼ 360029800), indicating the effect due to the Reynolds number in the range presented
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Fig. 9. Vorticity contours for Ste=Stn ¼ 1:040 and 0.960 at A0 ¼ 201 and comparison of longitudinal vortex spacing.

Fig. 10. Streamline contours for (a) A0 ¼ 101 and (b) 201 at Ste=Stn ¼ 1:0.
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may not be as substantial as in the case of an oscillating circular cylinder. Both the numerical and experimental studies

show that the approach from the higher forcing frequency requires smaller forcing amplitude for lock-on than that from

the lower frequency, and the numerical simulations show that the former results in larger amplitude of the drag and

surface vorticity fluctuations.
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Fig. 11. Vorticity contours for A0 ¼ 10 and 201 at Ste=Stn ¼ 1:0 and comparison of lateral vortex spacing.
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Fig. 12. Comparison of lock-on region determined by numerical study and experiments of Chen and Fang (1998).
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